
J .  Fluid Mech. (1975), wol. 70, part 1 ,  pp. 17-36 

Printed in Great Britaim 
17 

Fluid shielding of low frequency convected 
sources by arbitrary jets 

By T. F. BALSA 
General Electric Company, Corporate Research and Development, 

P.O. Box 43, Schenectady, New York 12301 

(Received 3 July 1974) 

A low frequency asymptotic theory is proposed for the shielding of noise by jets 
of arbitrary cross-section. The results of the theory provide a qualitative expla- 
nation for the appearance of the quiet and noisy planes of a slot jet. The argu- 
ments in favour of this explanation are derived from a model problem in which 
a pulsating mass source is convecting along the axis of an infinitely long column 
of fluid of arbitrary cross-section. The jet velocity is represented by a uniform 
velocity profile (i.e. slug flow). The method of matched asymptotic expansions 
is applied to derive expressions for the acoustic pressure and the radiative 
power of the source. 

The solution for the elliptic jet indicates that the radiative power in the 
horizontal plane (containing the major axis) is less than that in the vertical 
plane (containing the minor axis). This difference in power varies with source 
Strouhal number and jet Mach number. The effects of jet temperature are also 
included in the analysis. The theoretical results are in good qualitative agree- 
ment with experimental findings for slot nozzles. The theory indicates that the 
noise shielding offered by jets is negligible at low frequencies and low Xach 
numbers. 

1. Introduction 
A completely rational and satisfactory theory of jet noise has escaped the 

concentrated efforts of scientists. No theoretical model can, at  the moment, 
predict the complete acoustic characteristics of complex nozzle configurations. 

One serious difficulty lies in the description of the noise source itself. A great 
step in this direction has been taken by Lighthill (1952), who identified the source 
as convecting and randomly fluctuating turbulent eddies. Although the quali- 
tative aspects of this picture appear to be correct, to date there are no mathe- 
matical models that describe the quantitative aspects of the physics. 

Another serious conceptual difficulty arises in the description and interpre- 
tation of the fluctuating pressure p itself. It is undoubtedly true that, very far 
from the jet, the perturbation pressure is ‘acoustic’ in the sense that it obeys a 
linear hyperbolic equation. To solve this equation uniquely, suitabIe initial and 
boundary conditions must be provided. Since the linear perturbation equation 
is valid only far away from the jet, the boundary conditions must be given on 
a large surface enclosing the jet. The governing equation can then be used to 
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18 T. F.  Balsa 

continue the pressure to another large surface. Unfortunately no such boundary 
conditions can be prescribed theoretically at present, so the problem for the 
acoustic pressure cannot be solved rigorously. 

One very approximate and physically meaningful way around this dificulty 
is to assume that a perturbation equation holds everywhere in the fluid, including 
the jet, and that the noise sources act as forcing terms for this equation. This is 
Lighthill's acoustic analogy. 

The Navier-Stokes equations, which are believed to describe jet noise the 
most accurately, are of course known. It is possible to rearrange these equations 
into the form 

Lw = f + g ,  
where L is a linear hyperbolic operator, w is the dependent variable (generally 
a vector as written here), f is the noise source and g is a remainder, usually 
neglected. The only restriction on (1  a)  is that far away from the jet f, g -+ 0 and 
L - 0, where is the classical wave operator and the tilde denotes equivalence. 
One minor assumption implied by the last sentence is that the medium external 
to the jet is perfectly homogeneous and at  rest. It turns out that the rearrange- 
ment of the Navier-Stokes equations into the form ( la)  is not unique. Thus 
L, f and g are somewhat arbitrary: intuition and physical insight must deter- 
mine any two of L, f and g. Lighthill (1952) assumed that L = and g = 0 
(with w replaced by p") and showed that f must be of the form of a double space 
derivative. One undesirable consequence of the Lighthill formulation is that f 
depends on the density p". Perhaps a more satisfactory description of the acoustic 
pressure is offered by Phillips (1960) and Lilley (1972). Lilley's equation, valid for 
unidirectional flows, is 

where D/Dt = a/at + D alax,. In  this equation the undisturbed jet velocity 0 
and jet sound speed c" are assumed to be functions of the co-ordinate x, only. 
The jet axis is along the x, axis and p" = p"(x3) is the undisturbed density. u: is 
the randomly fluctuating part of the ith velocity component and the overbar 
denotes a time average. Observe that we have omitted the shear noise term in 
( 1  b) ,  time is denoted by t and x = (xl, x2, x,) is a fixed co-ordinate system. 

The right-hand side of (1 b )  has been essentially identified by Lighthill as an 
acoustic quadrupole. Its left-hand side accounts for refraction (Ribner 1960, 
1962) and fluid shielding or shrouding (Ribner 1960; Powell 1960; Csanady 1966). 
It was Mani (1972) who first solved a model problem to quantify the effects of 
fluid shielding on total radiated power. It now appears that the three most 
important physical aspects of jet noise are source convection, refraction and 
fluid shielding, although it is generally not fruitful to view refraction and shield- 
ing separately. Furthermore, recent work of Mani (1974) indicates that fluid 
shrouding effects can, at  least partially, explain the variation of the jet density 
exponent of hot jets. 

Convective amplification, as given by Lighthill, is frequency independent. 
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On the other hand, the combined convection-fluid-shielding factor of Mani is 
strongly frequency dependent. In  fact, at very high frequencies, Mani (1972) 
found that convective amplification altogether disappears. A purely physical 
explanation for this has been given by Ribner (1960) and Csanady (1966) and 
is known as the Ribner-Csanady co-moving fluid hypothesis. 

The work of Mani concentrates on the shielding offered by circular jets. It is 
natural to extend his results to jets of arbitrary cross-section. The purpose of 
this paper is to show how such an extension can be carried out at  low frequencies 
and to assess the effect of non-circularity on shielding. It should be borne in 
mind, however, that shielding is most effective at  high frequencies, so that a low 
frequency theory can, at most, indicate trends as the frequency is increased. 
(By comparing our approximate results with Mani’s exact results for a circular 
jet, we establish an upper limit for the validity of our low frequency theory. 
This upper limit is reasonably high, so that a low frequency theory can provide 
useful information even for moderately high frequencies.) 

Region 1 

s 

u=o 

X 

Characteristic size=u 

FIGURE 1. Idealized geometry of an arbitrary jet. 

Considerable experimental evidence (Olsen, Gutierrez & Dorsch 1973; Hoch 
& Hawkins 1973) indicates that the noise characteristics of non-circular jets 
are a strong function of the specific plane of measurement: not only that the 
spatial distributions of the pressure level are different but also that the power 
radiated per unit polar angle varies with the angle itself (figure 1). The last 
remark suggests an easy and reasonably efficient method for reducing jet noise 
in certain directions. 

A number of qualitative arguments, usually involving turbulent mixing, pro- 
vide a, possible explanation for this selective appearance of ‘quiet’ and ‘noisy’ 
planes. Recently, Crighton (1 973) has advanced a theoretical stability argument 
for an incompressible elliptic jet. His results show that the instability is more 
pronounced along the minor axis than along the major one. These results cer- 
tainly support the concept that the noise level of a jet can be modified by the 
stability characteristics of the mean flow.? 

7 The author is grateful t o  one of the referees for pointing out that the crackle phe- 
nomenon discussed by Ffowcs Williams (1973) is indeed caused by the instability of the 
flow. 

2 -2 



20 T. F. Balsa 

I n  this paper we show that a plausible explanation for the appearance of the 
quiet and noisy planes is acoustic shielding. The arguments in favour of this 
explanation are drawn from the results of a model problem. 

In  real, high Mach number jets, of course, both the aerodynamic and acoustic 
effects are present. Through carefully designed fundamental experiments it 
will be possible to determine which of these effects is more significant. Once this 
has been determined, a real step will have been taken towards the understanding 
of jet noise. 

Our formulat,ion of the problem parallels that of Mani (1972) quite closely. 
We assume that the jet velocity profile can be represented sufficiently accurately 
by a, uniform velocity profile (i.e. by a plug-flow profile). Certainly at  low fre- 
quencies the precise form of the radial gradients of the mean flow is not important. 
Slowly varying axial gradients could be handled by an extension of our asymp- 
totie theory. Our basic idea is to divide the flow regime, in the sense of matched 
asymptotic expansions, into two regions, one near and the other far from the 
jet. In  the inner region the axial gradients may be neglected since the appro- 
priate length scale is the diameter of the jet. On the other hand, the pressure in 
the outer region obeys the classical wave equation, so that the velocity (or its 
gradient) does not enter the outer solution. Clearly then, the basic approach 
used in this paper is applicable to slow axial variations in the mean flow provided 
that at each point x1 the local velocity 8(x,)  is used.? 

= constant and c" = constant 
but with 0 and I? discontinuous across the jet interface. The terms dc"/dx3 and 
dO/dx3 are dropped from (1 b )  (these are identically zero except a t  the jet boun- 
dary) and the pressure and particle displacement are required to be continuous 
across the interface. It is known that solutions to the above problem generally 
exhibit the Kelvin-Helmholtz instability. We shall briefly touch upon this 
tJopic in another section. 

Our governing equation is Lilley's equation with 

2. Formulation of the model problem 

the form 
We begin by assuming that the acoustic field obeys a linear wave equation of 

where @ is the velocity potential, D is the disturbance that generates the acoustic 
field, t is time, x is an axial co-ordinate, along which the fluid velocity is 0 + QX, 
where 0 = constant.$ The undisturbed speed of sound is represented by the 
constant Eand 4 = V2 is the Laplacian in the transverse co-ordinates. Physically, 
( 2 )  represents the propagation of an acoustic disturbance whose fluid velocity is 
(QZ, V@) in a uniform stream of speed 8. 

As are all partial differential equations, ( 2 )  is solved in a specific space domain. 

t This observation is perfectly analogous to classical slender-body theory, in which 

1 Note that 0, E ,  ..., etc., are assumed to be constant over each cross-section. 
the body shape varies slowly in the axial direction. 
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This domain is illustrated in figure 1 together with the appropriate values of 0, 
c" and the undisturbed density p". Thus, for r < r J ,  0 = U ,  c" = c2 and p" = pz;  for 
r > r J ,  0 = 0,E = c1 and p" = pl, where 

r = rJ(S), 0 6 0 < ZT, (3) 

is the equation of a doubly infinite cylinder. We assume that 2r, < a, where a 
is a given constant. 

It remains to model the source term B. Here we are guided by the desire to  
maintain simplicity and the success of the work of Mani (1972). We assume 

D = exp ( - iw , t )  6(x - Ut)  f (r ,  0)/a2, (4) 

where wo is a given constant and f (r ,  0) is a given function such that f = 0 for 
r > rJ .  Physically, the source term represented by (4) is a harmonically oscil- 
lating disturbance of frequency wo concentrated at  x = Ut.  The source is, of 
course, convecting at  speed U in the +x direction. The assumption that the 
source convection speed is the same as the jet speed is made for simplicity. 

Across the interface between the jet and the quiescent region we require 
continuity of the perturbation pressure p and the particle displacement 9. The 
latter assumption implies negligible mixing between the jet and the surrounding 
medium. The expression for the perturbation pressure is most easily derived 
from the linearized x-momentum equation, and is given by 

where p" is the undisturbed density in the appropriate region. The particle dis- 
placement 9 obeys 

where a@/@ is the velocity normal to the mean location of the interface between 
the jet and the quiescent region. 

We remark that the undisturbed static pressure is also continuous across the 
jet boundary. This implies that, for given ambient conditions, the jet density 
or speed of sound (i.e. temperature) determines uniquely the undisturbed 
thermodynamic state of the jet. 

Our governing equation (2) is hyperbolic and requires initial conditions for 
uniqueness. These can easily be provided (for example, CD = a@/at = 0 a t  t = 0). 
However, in the present context we are interested in the long-time solution (as 
we essentially follow the disturbance), and the initial conditions have negligible 
effect on this. 

With the above preliminary remarks in mind, we extract the time and x 
dependence in (2) through Fourier t'ransforms. Let us define 

f After performing the Fourier transform in time, it is clear that the x dependence of 
the solution must be of the form given by (Bc). Note that a Fourier transform in 2 also 
leads to (6  c) after inversion. 
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Using these transforms the resultant equation for 
region by 

and in the j e t  region by 

is given in the still-air 

(7 a )  AW +rc;(~;tyG = o 

or 

where k, = w,/cl. The propagation constants K,+, K2+ and Kg are given by 

(K:)' = K2 - ( K  - 1)'/M2, @a)  

where K = w/wo, ilf = U/cl < 1, pzl = p2/p1 and r12 = F1/F2, with 

r = (i-g/~~)y. ( 8 d )  

22 denotes the gas constant and cp is the specific heat at  constant pressure. 
An additional assumption made in deriving ( 8 b ,  c) is that the gas is thermally 
perfect (but not calorically perfect). 

We are interested only in the ease (Klf)2 2 0 (otherwise the far-field solution dies 
off exponentially in the transverse variable), that is, (1 + N)-l < K 6 (1 - M)-l. 
When (K2+)2 2 0, that is, (1 +M)-l 6 K 6 1 +M(I',,p,,)*, equation ( 7 b )  holds; 
otherwise (7  c) holds. 

The behaviour of K$ and K z  is shown in figures 2 (a)  and ( b )  for several values 
of iM. In these figures it is assumed that rl2pzl = I. 

To complete the present framework for the formulation of the problem, we 
extract the t and x dependence of the matching conditions across the interface. 
In  the still-air region we find that the transforms of (5a, b )  are 

(9a7 b )  
i aF* 

p* = ip,w@*, 
7 - w  an 

- -  i a@ 
p* = ip,w,CD*, 7" = - -. 

W ,  an 

- - -  * - - - 
and in the jet region 

(9c, 4 
- 

Thus the canonical problem to be solved is 

A$ & ki K2$ = f ( r ,  B)/a2, 
with matching conditions 

K$l = P21$2, = K(a#/an)2  on = rJ,  (1% c )  

where K 2  stands for (Klf)2, (KZ+)2 or ( K T ) ~ .  Note that $ = - (an)$ ci U p  and 
denotes the solution in the jet while $1 applies in the ambient medium. 
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Observe that, after taking the convective derivative apt + Oa/ax of ( 2 )  and 
(a), we arrive at  

and 

K: 

0 1 2 3 4 5  6 1  
K 

8 9 10 

0 1 2  3 4 5 6 7 S 9 10 
K 

FIG~RE 2. (a) Free-space propagation constant K: and 
( b )  jet propagation constant K& vu9. frequency K .  
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in the jet and quiescent regions respectively. Therefore the convective derivative 
of the solution to (IOU) provides the solution of (11). The left side of (11) is 
essentially that of Lilley's equation with and c" constant over each cross- 
section. Also note that differentiating the solution of (11) with respect to x 
once (twice) yields the solution for a generalized axial pressure dipole (quadru- 
pole). Furthermore, by specializing f ( r ,  0) to suitable singular distributions, the 
solution for any point dipole or quadrupole field can be readily obtained. As 
an example, let f ( r ,  0) = 6(r - ro) 6(0 - Oo)/r, where ro and 0, are parameters. 
Differentiating this solution of ( 1  I)  with respect to ro and 8, yields the solution 
for an r - 0 quadrupole. 

Of course, the last remark merely states that, if the source solution (i.e. the 
Green's function) to ( I O U )  is known, the solution for an arbitrary forcing function 
f ( r , 8 )  can be written down by superposition. Since our jet has a completely 
arbitrary cross-section, we may place the origin of our co-ordinate system a t  the 
source location. Thus our canonical problem can be replaced by 

A$ ki K2$ = 6(r)/r (12) 

without any loss of generality. Boundary conditions (lob, c) are of course retained. 

3. Expansion of the inner and outer solutions 
We begin by introducing an inner variable F = r /a  and rewriting (12) as 

where a denotes the characteristic size of the jet and 6 = k,a. We wish to find 
an asymptotic solution of (13) as c+ 0. For the time being we assume that K 2  
is about unity and later show how to improve the asymptotic solution when K 2  
is considerably larger. The asymptotic limit € 3 0  clearly corresponds to a low 
frequency solution of (11). 

We consider inner gauge functions Sl",l(e) = (&e)2vlogfi(&s) and expand the 
inner solution qYi) outside the jet as 

Y = 0, I ,  ..., p. = 0,1, ..., v +  1. p = z; d$(€)q5$, (14) 
v, t g  

The form of the inner gauge functions is suggested by the results of classical 
slender-body theory (Germain 1967). The theory of supersonic flow over a slender 
body is formally equivalent to the low frequency theory of a pulsating body 
(Miles 1953; Landau & Lifshitz 1959, p. 283). Thus it is not surprising that the 
same gauge functions arise in the present problem as did in classical slender-body 
theory. After substituting (14) into (13) and collecting like gauge functions in c, 
we arrive a t  

= 0 a t  order 1 ('lowest' order solution), (15a) 

= 0 at order log (&), (156) 

&j5fi = 0 a t  order (&)210g2 (&), (15c) 
&5yi + 4K295fi = 0 at order (&e)2 log (&), (154 

A$# + 4K2&j = o a t  order (+e)2, etc. (15e) 
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Thus the sequence of inner solutions satisfies Poisson's (or Laplace's) equation. 
The inhomogeneous terms are either given or are known from the lower-order 
solutions. 

We next introduce an outer variable R = k,r = ef and a sequence of outer 
gauge functions 650,)(e) (to be determined by matching asymptotically the outer 
solution to the inner solution). We rewrite (12) as 

If we represent the outer solution by 

then each term in the expansion obeys 

Clearly the sequence of outer solutions obeys the homogeneous Helmholtz 
equation. 

4. Inner and outer solutions and results of asymptotic matching 

three-term asymptotic sequence to the required order of accuracy. Let 
We first regroup the inner and outer gauge functions 6$ and S$'j to form a 

E = l+ log(~€)+log2(~€) ,  

then the first three terms of this new gauge sequence are 

a,(€) = E,  a,(€) = (&)E,  as(€) = (*€)2E. (1 8 a-c) 

The matching is done, term by term, for the coefficient of each 6, (n = 1,2,3).  
Such regrouping is absolutely essential for the success of the asymptotic matching 
principle as given by Van Dyke (1964, p. 90). The reasons for regrouping are 
thoroughly discussed in a series of papers by Fraenkel (1969). The point here is 
that a given function can be expanded in several different sequences of gauge 
functions a$ and 6:;. Since the function is given, there can be no question of the 
validity of any of these expansions. However, not all of these expansions 
satisfy the asymptotic matching principle of Van Dyke (1964). In  other words, 
it is possible to have a situation in which the expansion is correct, but the 
inner and outer solutions cannot be matched. Such is the case in the present 
analysis if term-by-term matching is required for the gauge sequences 6:; 
and 8g. 

However, if the regrouping is done according to (is), the inner and outer 
solutions can be matched. For example, the matching must be done for the 
coefficient of the term 1 +log (3e) + log2 (+e) rather than individually for 
the coefficients of 1, log (&) and log2 (Be). After a step-by-step application of 
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the asymptotic matching principle, we find tha,t in the inner region (but outside 
the jet) - - 

$&) = Ah1) + Bhl) log F + F-”(C;,1) cos n0 + DE) sin no), 
n=l 

where Ahm), Bh”’, Cp) and DP) (m = 1,2,  . . ., 5; n = 1,2,  . . .) are constants and 
7 = 0.57721 (Euler’s constant). Observe that the lowest-order solution behaves 
as Iogf as F + c o  and that both and $yi are constants (actually the latter 
result comes from matching inner and outer solutions to all orders). Thus the 
lowest-order solution is a ‘classical’ solution to Laplace’s equation in the sense 
that a$$ /aF  vanishes a t  infinity. 

Similarly, the matched outer solution is given by 

$(O) = [A,, +Ao,(+s)210g ( i e )  +AO3(4€)2] HP)(KR) + ( ie )  H\]-)(KR) 

x (All cos 8 + B,,sin 8) + ( ~ C ) ~ H ( ~ ~ ) ( K R )  (A,, cos 28 + B,, sin 28) + . . . , (20) 

where Aol, AO2,Ao3, A,,, B,,, A,, and B,, are constants and the@:) (n = 0, 1,2, . . .) 
are Hankel functions. The coefficients in the outer solution are given in terms 
of those in the inner solution by 

and 

A,, = niKCY’, B,, = 77iKD(11), A,, = 77iKZC(21’, B,, = 7riK?DL1). (22a-d) 

A;,) = &[I + (2i/n) (logK+y)], (23a)  

AS,) = (2i/n)Ao1, A p  = (2i/77)A0,, P 3 b ,  c )  

Ab4’ = A02[1 + (2i/T) (logK+7)] + (2i/r)A03, ( 2 3 d )  
4 5 ’  = Ao3[l+ (2i/n) (logK+T)]. (23 e) 

Observe that we are matching the outer solution to the inner solution outside 
the jet (i.e. both of these solutions are for the quiescent region), so that in this 
section K2 stands for (K t )2  and $:; is the inner solution outside the jet. 

We wish to remark that the above results were obtained by a systematic 
application of the ‘strict ’ rules of singular perturbation theory. In  this particular 

Similarly, the constants in the inner solution are obtained from 
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example it is possible to short-circuit many of the algebraic steps that lead to 
the h a 1  results. All we need to do is to observe that the outer solution can be 
written down to any order of accuracy.? Rewriting this solution in terms of 
the inner variable and expanding in terms of E ,  we find that 

m 

n=O 
$(O) = x HL1)(KR) (ie), [A,, cos nB + B,, sin n0 + . . .] (24 a )  

or $(O) = A,,[I + ( 2 i / n )  ( logF+logR+~)]  

i ( n - I ) !  2i 
7~ n=l K"P 7l 

-- x - (A,, cos nB + B,, sin no) +- A,, log (he) + . . . 
= $fd + log (&€) $ f ;  + . . . . (24 c )  

Prom this equation we can immediately deduce the form of $$,) and the relation- 
ship between the near-field coefficients Ail-), BF), C y )  and 0:) and the far-field 
coefficients Aol, A,,, and B,,. This relationship is, of course, that given by the 
asymptotic matching principle for n = 1 and 2. Furthermore it also appears that 
$ti = constant and that A,, and B,, are proportional to (2;;) and D',". Thus part 
of the asymmetric outer solution is matched to the asymmetric part of the 
lowest-order inner solution. 

5. Inner and jet solutions and results of matching pressure and particle 

The sequence of inner equations ( 1 5 )  for the velocity potential is also satisfied 
by the potential $(:: inside the jet. Thus the lowest-order solution inside the jet 
satisfies 

and an application of Gauss' theorem shows that 

displacement across jet boundary 

A$;;) = S ( + ) / i  (25  a )  

where 0 is the cross-sectional area of the jet, 80 denotes the jet boundary and ds  
is the arc length along the boundary. Similarly, from (15a) ,  

(25c )  

where z is the annular area between the jet and a large circle of radius F = con- 
stant. Clearly the boundary &? consists of two parts, namely the jet boundary 
and the circle. Combining (25b) ,  ( 2 5 c )  and matching condition (10c) yields 

Pinally, the contour integral in (26) is evaluated explicitly using (I  9 a )  : 

BL1) = K .  ( 2 7 a )  

The author is grateful to one of the referees for pointing out this degeneracy of the 
asymptotic matching. See also Landau & Lifshitz (1959, p. 283). 
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By a completely analogous argument we find that 

Bh4) = (2/7f) m [ ( K t ) 2  7 K 2 p 1 2 ( K $ ) 2 ]  

Note that the interface matching conditions (10) were applied for each coeffi- 
cient of the gauge functions. In  particular, $t] = constant outside the jet implies 
that 

The remarkable outcome of this asymptotic expansion is that the outer field, 
to the required order, depends only on the lowest-order inner and jet solutions. 
Both of these solutions satisfy Laplace’s equation. 

= constant inside the jet. 

6. Calculation of the acoustic power of the source 
The acoustic power of the source is calculated by integrating the product of 

the pressure and the normal component of the velocity over a large cylinder 
enclosing the jet. The mathematical technique is fully described by Morse & 
Ingard (1968, p. 7 2 8 ) .  

Let us express the velocity potential in the far field as 

$(o) = C H\:) (E,K;t T )  (A,  cos n0 + B,, sin no). 

A ,  = A0,+Ao2(~e)2log (4s) +Ao3(&)2, 

(28  a )  
n 

Then comparison of (28a) and ( 2 0 )  shows that 

(28b)  
A ,  = (=&)A,,, B, = (4s) Bll, A ,  = ( & c ) ~ A ~ ~ ,  B, = (&)2BZ1. 

( 2 8 ~ - f )  
\ “ I  

The coefficients An and B, (n = 0, 1,2, . . .) are complex in general. 

the velocity are given by the x, t Pourier inverse of (28a) ,  
The expressions for the perturbation pressure and the radial component of 

+ B, sin n0) dw, (29 a )  

@? = - exp [ i (w  - w,) x/U - iwt] Kf 2 Hit)’ (A,  cos no 
n 

+B,sinnO)do, ( 2 9 b )  
and the radiative power of the source is 

P is the total power and Po is the ‘power in a plane ’7 whose orientation is deter- 
mined by the polar angle 0. Observe that the integral for Po is evaluated over a 
frequency range defined by the Doppler limits. 

We now discuss very briefly the Kelvin-Helmholtz instability. This classic 
problem has been examined by a number of authors, including Miles (1957), 

t Pe is also proportional to the power per unit polar (or azimuthal) angle 8. 
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Batchelor & Gill (1962) and more recently, Jones & Morgan (1972). The con- 
clusion of Jones & Morgan, although only qualitatively relevant to the present 
problem, is that the long-term solution for a harmonically pulsating source 
(switched on at  t = 0) is a harmonically varying (in time) acoustic field which 
contains an additive element that grows exponentially with distance down- 
stream but decays exponentially its away from the jet boundary. In  fact, the 
correct solution to the present problem can be written in the form Y = 4 + q51, 
where 4 is obtained from our analysisand is the unstable solution. Our approach 
at this point is to ignore the unstable contribution to the acoustic field. Of 
course, this approach cannot be justified mathematically. On the other hand, 
the physical justification is clear, since the actual jet is reasonably stable with 
a bounded acoustic field. It should be noted, however, that there are Mach 
number limitations on this physical justification (Pfowcs Williams 1973). 

Additively unstable or unbounded solutions arise quite frequently in applied 
mathematics and their presence is usually attributed to problem idealization. 
Perhaps a relevant and classic example is the theory of normal hyperbolic 
equations, where the fundamental solution is singular on the ‘Mach cone’ (i.e. 
on the characteristic surfaces). Thus integrals of the fundamental solution over 
surfaces, or regions of space, are divergent in the classical sense. These diffi- 
culties were encountered by Volterra and Hadamard, who devised special (but 
mathematically not justified) techniques for ‘evaluating ’ divergent integrals. 

This concludes the formal analysis of the paper. We now apply the above 
results to two specific jet configurations. In the following examples the not’ation 
is self-contained and departs slightly from that in the main body of the paper. 

7. Circular jet: radiation from off-axis sources 
Mani (1972) has examined theoretically the radiation from sources convecting 

along the centre-line of a circular jet. We now use the present asymptotic theory 
to extend his results to the off-axis case in the low frequency limit. 

The geometry of the jet is shown in figure 3. The jet boundary is given by 
R = 1;  the source is located at R = R, < I, 0 = 0,. 

The lowest-order inner and jet solutions obey Laplace’s equation [see ( 1 5 4  
and (25a)l. Werepresent these solutions by yY1) = q5fJ and qS2) = q5$ respectively. 
Thus rn 

n = l  

where A,, B,, a,, C,, D,, an and pn (n = 1,2,  ...) are constants. The jet solution 
may be rewritten by using a well-known Fourier expansion of log r for R > R,: 

p) = a,+logR+ C [ a,Rn-- (2))” cos n ~ , ]  cos n~ 
n = l  

+ 2 /3,Rn-- - sinn0, sinn0. (31c) 
n=l [ I 
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The constants A,, B,, . . . , etc., are determined by matching the pressure and 
particle displacement across the jet boundary R = 1. The results of this matching 
are B, = K, ( 3 2 a )  

2 R," cos n0, 
n 1 + p , , ~ ~  ' 

n 1 + p l z ~ 2  ' 

c = - - K  n = 1,2, ..., n 

2 RtsinnO, 
D = - - K  n = 1,2, ..., n 

( 3 2 b )  

where K = w/wo and p12 = p1/p2. 

FIGURE 3. Geometry of circular jet. 

Observe that, as r -+ co, the co-ordinate systems (R, 0)  and ( r ,  8) are related by 

T = R[( 1 - R,/R) cos (0 - 0,) + ...I, ( 3 3 a )  

8 = 0+(R0/R)sin(0-0,)+ ... ( 3 3 b )  

R = $1 - (rO/r) cos (8  - 8,) + . . . I ,  ( 3 3 c )  

0 = 8+(r,/r)sin(8-O0)+ ..., ( 3 3 4  

and 

where ro = R, and 8, = 0, +T. (yo, 8,) denote the co-ordinates of the jet axis 
relative to the co-ordinate system attached to the source. After using the co- 
ordinate transformation ( 3 3 )  in ( 3 1 a ) ,  we find that as r+oo 

$(l)  = A ~ + B ~ l o g ~ - B o [ ( ~ o / ~ ) ~ ~ ~ ( 8 - 0 ~ ) + ~ ( ~ o / ~ ) ~ ~ ~ ~ 2 ( 8 - 8 0 ) +  ...I 
+C,r-1cos8+D,r-1sin8+r-2~~~ (20) (C,+Cl:r,cos8,-D,r,sin8,) 

+ r-, sin (20) (D, + Cl r,, sin 8, + D, ro cos 8,) + . . . . ( 3 4 )  

Thus the far-field coefficients (21) and (22) are given by (27) and ( 3 4 )  as 

( 3 5 3 )  

( 3 5 6 )  
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- &n2K[1 -k ( 2 i / n )  (10gKt +7)] [(K;')'T K2p12(K$)'], 

3: 

A,, = +Qni~(K,i),r;+gni~[(K;')2~ (K$)2] 

(35c) 
A,, = niK:KTo cos 8,(2/Q+ - l), ( 3 5 d )  

B,, = niKfKrosin8,(2/Q+- I), (35e) 

A,, = Qni(K1+)2KT; cos (20,)  Q-/Q+, (35f) 
B,, = -&~-i(Kt)~~r;sin (20,) Q-/Q+, (35d 

where Q* = 1 - + p 1 2 ~ 2 .  

Before we present the numerical results for the total power P, we briefly dis- 
cuss some possible non-uniformities in the asymptotic expansion. It may be 
seen from figure 2(a)  that Kf is of order unity; therefore the harmonic terms 
All, . . . ,B2, exhibit no non-uniformities. On the other hand, it may be seen 
from figure 2 ( b )  that terms proportional to Kd may become much larger than 
unity. In  this case the asymptotic expansion has a small range of validity re- 
stricted to very small values of E .  To extend this range, we first observe that the 
non-uniformity comes from the axisymmetric terms. An examination of the 
structure of the complete axisymmetric solution reveals that the non-uniformity 
arises from a binomial expansion. To eliminate this difficulty, we replace the 
constant A,, given by ( 2 8 b ) ,  by 

A; = Agl/(Aol -A0,($s)2log ( Q E )  -Ao3(&)2). (36) 

In  the limit as E + O ,  ( 3 6 )  and ( 2 8 b )  are clearly equivalent. However, for finite 
values of e, (36) has a much wider range of validity than ( 2 8 b )  in this particular 
example. 

In  figure 4 we show a comparison between the exact calculations by Mani and 
the results of the present asymptotic theory for the total radiative power (30a). 
The power is shown to be a function of the convective Mach number and the 
source Strouhal number. It may be seen that the agreement between the two 
results is excellent over the entire Mach number range (up to 0.9) and a wide 
range of Strouhal numbers. 

Since the far field, to the required order of accuracy, varies as sinn8 and 
cosn6 (n = 0 , 1 , 2 , )  it may appear that the off-axis results are valid only in the 
case when the eccentricity associated with the problem is small, that is, when 
R, < 1. This point of view was expressed by one of the referees. The author 
thinks that there is no reason to place a bound on R, since the asymptotic solu- 
tion does not exhibit a non-uniformity as R,+ I. Thus the present analysis not 
only extends the axisymmetric results of Landau & Lifshitz (1959, p. 283) to 
higher order but also includes the effects of asymmetry. 

By differentiating the expression (34) for the velocity potential with respect 
to the source co-ordinates it is a simple matter to derive the pressure and velocity 
field of an off-axis quadrupole shielded by a circular jet. For example, a2#1)/8~,a80 
is the velocity potential of an T - 8 quadrupole, whose radiated power can be 
readily obtained. 

A complete physical interpretation of these results is given by Mani (1972). 
We re-emphasize, however, that the above calculations show the frequency 
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dependence of convective amplification. It is known from experiments (Lush 
1971) that the data for the sound pressure level as a function of directivity 
angle (at constant source frequency) are under (over) estimated at  low (high) 
frequencies by the Lighthill theory. We interpret this to mean that convective 
amplification is frequency dependent. Furthermore, the results in figure 4 
show such dependence for the total power. Of course, the connexion between 
the results of Lush (1971) and those in figure 4 is qualitative in nature. 

P m- Circular jet \ 0 

-4t I 

- 16 
I I I 

0.00 1 0.01 0.1 1 .o 
St = k , a / r M  

FIGURE 4. Convective amplification as function of M and St. P = 20 log,, [(radiated power 
of shielded source)/(radiated power of unshielded source)]. c1 = cz, p1 = pz, M = source 
convective Mach number, h = 2rr/k, = wavelength of source radiation. - , exact 
results of Mani (1972); 0,  present asymptotic theory. 

An extremely important point is that acoustic shielding is confined to the re- 
fractive zone of silence, but shielding is more than just refraction since the 
former affects the radiated power. In  other words, measurements outside the 
zone of silence would show negligibIe shielding. However, such measurements 
are insufficient for the computation of the total power. Thus, to look at  the 
effects of fluid shrouding or shielding, the sound pressure level must be obtained 
in the zone of silence. 

8. Elliptic jet: radiation from axial source 
Let us consider an elliptic jet whose semi-axes are given by a and ,8, where 

a > /3 > 0. The source is located a t  the centre of the ellipse. We introduce elliptic 
co-ordinates (p, Y )  (0 6 ,u < o 3 , O  6 Y < 2n) by the transformation 

r = +a(cosh2p - sin2v)*, 0 < r ,  (37a) 
8 = tan-l (tanhp tan Y), 0 6 0 < 27r, (376) 
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where a = 2(a2 -B2)* is the focal length and ( r ,  8) are polar co-ordinates (figure 5 ) .  
The equation of the ellipse is 

P = P1 = log[(a+P)l(a2-P2)*l* 

The lowest-order inner and jet solutions obey Laplace’s equation [see (15a) 
and (25a)l. We represent these solutions by #(l) = 4% and qY2) = #i$) respectively. 
Thus m 

Jet 
bounddry 
P = P l  

= A ,  +Bop + Cn e-,fl cos nv, 
? L = l  

Acoustic source 

“ 1  nm 
e-np cos n v  cos - + C am sinh np cos nv ,  (38 b) 

2 n = l  

where A,, B,, a,, C, and a, (n = I, 2, -..) are constants, again to  be determined 
by matching the pressure and particle displacement across the jet boundary. 
Observe that the terms in (38b) that do not involve any of these unknown con- 
stants represent log r in elliptic co-ordinates. 

The matching across the jet boundary yields 

(39a, b )  
cos +nrr 4 

n Qf - Q- exp ( - 2np1)’ 
n = 1,2, ..., B o = K ,  Cn=--K  

(39% d )  
2 

Q+/Q- - exp ( - 4p,) and a1 = 0, a2 = - exp f - 4 ~ ) ~  

where, as before, K = w/wo, p12 = p1/p2 and R* = 1 & p 1 2 ~ 2 .  

The transformation (37) to elliptic co-ordinates simplifies to 

4r a 2 ~ ~ s Z 8  
p = log--(;) a -+..., r2 

sin 219 
= e+(:) r2+... 

3 
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as r -+ co and, in the same limit, we find that 

e-npcosnv = (a/4r)2cosn~+n(a/4r)n+2cos(n+2)6'+ ..., n = 1,2 ,  ... . (40c) 

Using (40) in (38a) and the general results of the asymptotic theory (21), (22) 
and (27) we find that the far-field coefficients are given by 

A,, = (7l/2i) K ,  (41a) 

A,, = - i7l'~ZpK[(Klf)~ 7 p12K2(K&)2], (41 b)  

A03 = -i[(K$)2tlf K ( K Z f ) 2 t 2 ] ,  (41 c )  
where 

[~+-(e)~Q-l-'), (41d) 
a+P 

K2& [ 1 f ( logxt  7 )] t, = Ta/3(pl,K210s------ a+p 1/3 ni 
2 2a 2 

-; (1  - p --) (- Q+ --)/( a-p E- (*)I), (41 e)  
Q- a+p Q- a+p 

All = Bll = 0, (41f)  

B2, = 0. (41 h)  
The asymptotic expansion appears to be uniformly valid for all values of p < a. 
Thus it seems again that this low frequency theory is not, restricted to con- 
figurations with 'low departure from axisymmetry '. 

The power Pe [see ( 3 0 b ) l  in a plane inclined a t  an angle 0 to the major axis is 
calculated as a function of 8 for various values of e = koa(a = 1 )  and p. The 
results are shown in figure 6 ( a )  and ( b )  for two different source Mach numbers. 
For given values of 0, p and M ,  say 6' = 0, p = 0.5 and M = 0.7, the radiative 
power of the source decreases with increasing source frequency. The power for 
a given geometry at  a fixed value of 0 and for moderate values of e decreases 
with increasing Mach number. These observations are consistent with the 
results in figure 4 for a circular jet. 

The difference in acoustic power between the quiet plane (0 = 0) and the noisy 
plane (0 = 90") increases with the source Strouhal number and Mach number. 
According to our calculations the difference in power between the two planes 
is completely negligible a t  low frequencies and is of the order of a few db at 
higher frequencies. These conclusions agree qualitatively with the low velocity 
experimental findings of Olsen et ab. (1973). 

The total radiative power (30a) of the source varies inversely with the jet 
cross-sectional area at given Strouhal and Mach numbers. This observation is 
easily deducible from the results of figure 6 and agrees with the fluid shielding 
hypothesis of Mani. In simple terms, the radiative efficiency of the soiree varies 
inversely with the amount of moving fluid surrounding it. 
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FIGURE 6. Theoretical power calculations for elliptic jet. Pd = 20 log,, [(power per unit 8 
of shielded source)/(power per unit 0 of unshielded source)]. cl/cz = 1.0, pl/pz = 1.0, 
B = k,o!. -, p = 0.5; ---, p = 0.2. (a) = 0.7. ( b )  M = 0.9. 

3-2 
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9. Conclusions 
It has been shown that in the low frequency limit the inner and outer solutions 

obey the Poisson and Helmholtz equations respectively. The appropriate inner 
length scale is the jet diameter and the outer length scale is the wavelength. 
The outer solution, to order   BE)^, depends only on the lowest-order inner and 
jet solutions. The error in the outer field is O(e310ge). 

The asymptotic results for the circular jet indicate that the present theory is 
accurate for values of e up to 0.7 or 0.8. The non-uniformity of the expansion 
associated with the limit M -+ 1 (e fixed) can be eliminated, for the most part, 
by re-expressing the coefficient of the axisymmetric part of the far field as a 
fraction. 

As e -+ 0 the power of the jet becomes independent of jet shape. This conclusion 
appears plausible since in this limit all jets appear from the far field as ‘thin lines ’. 

The results for the elliptic jet offer one qualitative explanation for the presence 
and location of certain experimentally observed quiet planes. This explanation 
is purely acoustic and centres around the shrouding effect of the mean flow. 

The financial support for this study was provided by the U.S. Department of 
Transportation. I should like to thank Dr R. Mani for suggesting the problem 
and for many valuable discussions in the area of jet noise. 
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